火狐体育官网

2021年上海理工大學 “生物數學與動力系統”學術研討會

發布者:王丹瓊發布(bu)時間:2021-11-25瀏覽次數:10


為(wei)了交(jiao)(jiao)流(liu)生(sheng)(sheng)物數(shu)學(xue)(xue)(xue)(xue)(xue)(xue)與(yu)動(dong)力系(xi)(xi)統(tong)(tong)(tong)(tong)的(de)(de)最新研究成果和(he)發(fa)展動(dong)態(tai),促進我校與(yu)國(guo)內外相關領域專家的(de)(de)學(xue)(xue)(xue)(xue)(xue)(xue)術交(jiao)(jiao)流(liu)與(yu)合(he)作,決定舉(ju)辦“生(sheng)(sheng)物數(shu)學(xue)(xue)(xue)(xue)(xue)(xue)與(yu)動(dong)力系(xi)(xi)統(tong)(tong)(tong)(tong)學(xue)(xue)(xue)(xue)(xue)(xue)術研討會”學(xue)(xue)(xue)(xue)(xue)(xue)術研討會。會議圍繞生(sheng)(sheng)命科(ke)學(xue)(xue)(xue)(xue)(xue)(xue)、理(li)(li)論(lun)生(sheng)(sheng)態(tai)等(deng)領域的(de)(de)實(shi)際問(wen)題,深入探討數(shu)學(xue)(xue)(xue)(xue)(xue)(xue)、統(tong)(tong)(tong)(tong)計(ji)學(xue)(xue)(xue)(xue)(xue)(xue)與(yu)數(shu)據(ju)(ju)(ju)科(ke)學(xue)(xue)(xue)(xue)(xue)(xue)最新成果在生(sheng)(sheng)物醫(yi)學(xue)(xue)(xue)(xue)(xue)(xue)和(he)突發(fa)性(xing)傳(chuan)染病(bing)等(deng)系(xi)(xi)統(tong)(tong)(tong)(tong)理(li)(li)論(lun)研究中的(de)(de)重要作用,通(tong)過(guo)問(wen)題驅動(dong)的(de)(de)理(li)(li)論(lun)研究促進生(sheng)(sheng)物數(shu)學(xue)(xue)(xue)(xue)(xue)(xue)、生(sheng)(sheng)物信息學(xue)(xue)(xue)(xue)(xue)(xue)和(he)大(da)數(shu)據(ju)(ju)(ju)科(ke)學(xue)(xue)(xue)(xue)(xue)(xue)的(de)(de)理(li)(li)論(lun)發(fa)展,提(ti)升采用統(tong)(tong)(tong)(tong)計(ji)與(yu)計(ji)算(suan)方法(fa)分析處理(li)(li)突發(fa)傳(chuan)染病(bing)、生(sheng)(sheng)態(tai)學(xue)(xue)(xue)(xue)(xue)(xue)等(deng)領域實(shi)際數(shu)據(ju)(ju)(ju)的(de)(de)能(neng)力,為(wei)廣大(da)師生(sheng)(sheng)提(ti)供(gong)一個交(jiao)(jiao)流(liu)和(he)學(xue)(xue)(xue)(xue)(xue)(xue)習的(de)(de)平臺,歡迎屆時參加。



承辦團隊:“生物數學與動力系統”課題組

會議時間:20211126

會議地點:上海理工大學 學校視頻會議一教232

組織委員會:

宇振(zhen)盛  孟寶全  宋永利  婁 潔  趙(zhao)佃立(li)  陸秋君  原三領

會務組成員:

樊亞莉  張 伏  王 娟  彭偉敏  段西(xi)超  馬(ma)紀英(ying)   李(li)琳琳

聯系方式:

段西超 13122367350Emailduanxichao508@163.com

原三領 13162872868Emailsanling@fromshoestospecs.com


 (華東師(shi)范大學)

摘 要:對于一個給定的實數$x\in (0,1)$, 我們考(kao)慮一類單參數(shu)的康(kang)托集合族$C_\lambda $, 變(bian)動該參(can)數$\lambda $使得$x\in C_\lambda $. 我們討論這樣的參(can)數$\lambda $的性質.


Bifurcations in Recurrent Neural Network Involving Transcendental Functions

Weinian Zhang (張(zhang)偉年(nian))

Sichuan University (四川大學)

Abstract: In this talk we investigate bifurcations of a three-node recurrent neural network, in which the transcendental function tanh(x) and its iterates are involved. Those functions make computation so complicated that one hardly determine the number and distribution of all equilibria. We give a method to ignore the classic routine of discussion but display their saddle-node, pitchfork, and Hopf bifurcations.


異質性傳染病動力學模型與應用

Jing’an Cui (崔景安(an))

Beijing University of Civil Engineering and Architecture(北京建筑(zhu)大(da)學)

摘 要:傳染病爆發的(de)基本(ben)(ben)再生(sheng)數(shu)與(yu)最終規模問題的(de)研究(jiu)對于傳染病的(de)傳播(bo)與(yu)控制非常重要。針對異質的(de)多種群傳染病模型探討(tao)基本(ben)(ben)再生(sheng)數(shu)與(yu)最終規模的(de)關系,應用于一些傳染病案例(li)與(yu)免疫策略的(de)研究(jiu)。


Dynamic Modeling of COVID-19

Zhen Jin (靳 禎(zhen))

Shanxi University (山(shan)西大(da)學)

Abstract: The outbreak of the Corona Virus Disease 2019 (COVID-19) epidemic began since last December that has spread the fastest, caused the most extensive infections and has a huge impact on the safety of human life. Dynamical modelling is one of the useful methods to reveal the transmission rule of COVID-19 spread which is based on the internal transmission mechanism and can dynamically predict the future trend according to the current information. In the talk, we will introduce some of the transmission dynamics models of COVID-19 under intervention: homogeneous mixed dynamics model, network dynamics model, and household dynamics modelWe also evaluated isolation and other interventions measures.

 

返回(hui)原圖
/